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LETTER TO THE EDITOR 

Correspondence between classical and quantum chaos for 
hydrogen in a uniform magnetic field 

A Harada and H Hasegawa 
Department of Physics, Kyoto University, Kyoto 606, Japan 

Received 22 March 1983 

Abstract. It is shown, by numerical computations, that the classical and the quantal critical 
energy of a hydrogen atom in a uniform magnetic field, characterising the onset of irregular 
motions, approximately coincide. This result is obtained by applying a simple scaling 
property of the classical Hamiltonian, valid only for L ,  = O  (the angular momentum 
component along the field vanishes), to the numerically deduced relative areas of the 
irregular region of Poincare surfaces of section. 

The hydrogen atom in a uniform magnetic field is a typical example of a non-integrable 
Hamiltonian system, hence it is very difficult to elucidate over all quantum-mechanical 
energy levels of the system for arbitrary strengths of the magnetic field. 

Thus, some interesting problems exist in connection with this system: 
(i) the unique ground state having a binding energy logarithmically divergent with 

an increase in the field strength (Avron et a1 1981, Patil 1981); 
(ii) the appearance of quasi-Landau levels in the vicinity of the ionisation threshold 

(Edmonds 1970, Gay et a1 1980); 
(iii) the connection between the Rydberg and the Landau levels (Robnik 1980, 

Kuroda et a1 1982); 
(iv) the existence of an approximate symmetry (Zimmerman et a1 1980, Delande 

and Gay 1981, Robnik 1981, Clark 1981). 
The latter two problems, in particular, have received special attention in recent years 
as major exploring points in connection with the non-integrability of the system. 

Delande and Gay (1981), in their analysis of the quadratic Zeeman effect, argued 
the problems speculatively in the context of classical non-integrable systems, suggesting 
that it would be worth while investigating the corresponding classical trajectories. 
Robnik (1981) performed such computations, and his result exhibited a general 
feature of the PoincarC mapping analogous to the one for the well known nonlinear 
oscillator, namely the HCnon-Heiles system (Ford 1975). It can be seen from his 
results that the classical Kepler motion in a uniform magnetic field possesses a 
substantial region of irregularity in the diagram of the energy E against magnetic field 
B,  which is located over the regular region of the approximate symmetry and also 
below that of the escape motion. The result should naturally lead one to anticipate 
a structure of the quantal energy spectrum of the same system reflecting such 
coexistence of regular and irregular motions. 

This letter sets out to show that we have just obtained an affirmative answer to 
the above assumption. This is obtained from our own numerical analyses by Robnik 
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type classical computation, which is designed, however, for the special situation 
when the constant of motion of the angular momentum component along B vanishes, 
i.e. L, (=m)  = 0. 

According to Robnik’s indication (1981), the classical Kepler motion, in a uniform 
magnetic field under the condition of the constant of motion L,  (or quantum number 
m )  equal to zero, is an exceptional case as regards the general feature of the irregular 
region to exist, as outlined above, because this feature was obtained from the PoincarC 
mapping analysis together with a scaling property of the classical Hamiltonian in terms 
of m (regarding it as a continuous parameter) that is valid only for m f 0. To be 
more precise, let y denote the well known parameter representing the field strength 
( ihw , /Ry) .  The constant surface of energy E, when expressed as a function of y and 
m, was shown to satisfy 

(1) 

However, this is valid only for m # 0: if m = 0, due to the absence of the centrifugal 
potential, the effective two-dimensional potential of the Hamiltonian in cylindrical 
coordinates has no minimum. Thus, by considering a limiting procedure, m + 0, of 
the curve of the critical energy E, against y (the boundary of the regular and the 
irregular regions), Robnik concluded that the critical energy is merged into the escape 
energy in this limit, implying the disappearance of the irregular region in the E against 
B diagram for the m = 0 case. This seems to be one of the main reasons why Robnik 
was not able to compare his result with the quantum-mechanical optical spectra for 
the diamagnetic Lyman series ( 1 6 s n  <CO,  m = 0) calculated by Clark and Taylor 
(1980). Here, we show our result of the classical phase orbits computed directly for 
m = 0, verifying the real existence of the classical chaos characterised by the critical 
energy E, < 0; direct evidence that the irregular portion of the spectrum seen in the 
result of Clark and Taylor is indeed the quantal correspondence to the classical chaos. 

The classical Hamiltonian in the cylindrical coordinate system of the Kepler motion 
with the quadratic Zeeman term is given by 

(2) 
where atomic units are used and the constant of motion L,  is set equal to m. This 
Hamiltonian, as a function of four canonical variables pp, p ; p z ,  z and two parameters 
m and y, satisfies the scaling property (Robnik 1981) 

E ( y ,  m )  = m-’E(ym3, 1). 

1 2 2 -  2 -1/2 H = ~ ( P ~ + P ~ ) + ( ~ ~ / ~ P ~ ) + B Y  P ( P * + z  , 

H ( p p , p Z , p , z ;  ~ , m ) = m - ~ H ( m p , , m p , , m - ~ p ,  m-’z;ym3, 1) 

resulting in the relation (1) for the constant value E of the Hamiltonian with m # 0. 
On the other hand, the Hamiltonian (2) for the special case m = 0 is shown to 

have the following scaling property: 

(3) H(p,, ,  pz,p, z ;  y, m = 0) = ~ ~ ’ ~ H ( y - * ’ ~ p , , ,  y-lI3pZ, y213p, y2132; 1, m = 0), 
from which, in place of (l), we obtain the relation 

~ ( y ,  m = 0) = y 2 / 3 ~ ( 1 ,  m = 0). (4) 
Figures l (a)-(c)  exhibit some examples of PoincarC surfaces of section at the plane 

z = 0 with p,lz=o 3 0 for m = 0 and p = i y  = 1. A characteristic point of these figures 
is that the Hill region (the intsrsection of the invariant surface H ( p ,  q )  = E  with z = 0 
on which the mapping is made) is unbounded along the p,, axis up to *CO owing to 
the absence of the centrifugal potential, as contrasted to the compact Hill region for 
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Figure 1. PoincarC surfaces of section inside the Hill region for the Hamiltonian (2) with 
m = 0, p = 1 (y = 2) and energies ( a )  -1.0, ( b )  -0.9 and (c) -0.7 in atomic units. The 
region lpo I > 5 .1  is cut off. 

m = 1. It means that for any negative value of the energy E there exist some 
phase-orbit solutions of the equation of motion, associated with the Hamiltonian (2), 
with m = 0. Because of this singular nature of the equation of motion, the ordinary 
Runge-Kutta method of integration is found to break down near p = z = 0. To avoid 
this difficulty we adopted the Adams method with double precision (available from 
FACOM-SSL II subroutine library), and found it necessary to revise the trajectories in 
order to satisfy the conservation of the energy set up for each initial data. 

For the value of energy E = -1.0 (atomic unit) the Hill region is filled up with 
tori and a separatrix is seen to exist dividing the region into three parts (figure 2 ( a ) ) .  
The phase flows resemble those of double-well potential systems. For E=-0.9 
(figure 2 ( b ) )  there appear a stochastic layer around the separatrix and some resonances 
of orbits that look like chains. Thus, we can conclude that the critical energy E,, the 
onset of the irregular motions, is about -0.9 for p = 1 ( y  = 2). 

From the above numerical analyses, it can be seen that the critical energy E, for 
the irregular region exists, in fact, even for m = 0, whereas Robnik asserted that this 
was not the case. However, an important difference exists in the nature of the irregular 
regions between the case of m # 0 and of m = 0: Robnik’s result indicates that in the 
former case the curve of the critical energy E,(?) as a function of y possesses a 
minimum at the value 

ymin = 2.5 m-3 ( 5 )  
showing that in both limits, y + 0 and y +CO, the motion becomes regular with the 
Hamiltonian being approximately integrable. For m = 0, our result indicates, from 
(4), simply that 

& ( y )  = y2’3Ec(1). (6) 
Thus, the critical energy always decreases to -a, as y + 00, without reaching a minimal 
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Figure 2. ( a )  The oscillator strengths for Am = 0 transitions from the ground state to the 
Rydberg states after Clark and Taylor (1980). The lowest line corresponds to the n = 16 
levels perturbed by the quadratic Zeeman part. ( b )  The ratio of the area of total regular 
regions to that of the Hill region for each Poincare surface of section calculated from 
figure l (a)-(c)  etc. (The cut-off regions are ignored.) 

value (as formally consistent with the relation ( 5 ) ) .  This is a specific feature of the 
classical Hamiltonian ( 2 )  with m = 0, and contradicts the quantum-mechanical result 
that for y >> 1 the low-lying spectrum of the energy eigenvalues of the same system 
becomes regularly behaved (Hasegawa and Howard 1961), where the aspect of the 
divergence of energy against y is concentrated to the ground-state energy. 

It may be expected, on the other hand, that in a weak field regime y<< 1 of the 
quadratic Zeeman perturbation on the Rydberg states the quantal energy spectrum 
would show behaviour reflecting the coexistence of the regular and irregular motions 
of classical dynamics that would be in accordance with (6). We have tested this 
expectation by comparing our numerical data of the PoincarC surfaces of section (i.e. 
by calculating an area ratio of the irregular region to the total one of each surface of 
section plotted in the figures) with the quantum-mechanical optical spectra provided 
by Clark and Taylor (1980). Their figure 1 yields the best profile for comparison 
because this is the dipole excitation spectrum polarised along B of the Lyman series 
so that, apart from the relative intensity of each peak, the profile reflects the energy 
eigenvalue spectrum of the perturbed Rydberg series with m = 0. Figures 2 ( a ) - ( b )  
show this comparison by applying the scaling law (6) (actually, E,(y = 2 p ) =  
(2P)2’3E&) in order to be consistent with Clark and Taylor) to the unscaled data. 
From this comparison, therefore, we have good reason to justify that the irregular 
portion of the energy spectrum calculated by Clark and Taylor provides a real example 
of quantum chaos. 

The non-integrability of the classical Kepler motion in a uniform magnetic field 
is analogous to that of a two-particle Toda lattice with a varying mass ratio investigated 
by Casati and Ford (1975): the E, against y curve for m # 0 demonstrated by Robnik 
is in reasonable agreement with their result for the curve of E, against mass ratio. 
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The problem of quantising such non-integrable systems is considered important (see 
e.g. Percival 1977), but at present no clear-cut prescription is available for defining 
the quantal critical energy. Recently, Saita et a1 (1981) presented an explicit com- 
parison of the classical E,  with the quantal energy spectrum for the HCnon-Heiles 
system, showing that the onset of a group of spread degenerate levels merging into 
the adjacent one is nearly identical to the classical E,. A group of spread degenerate 
levels of the Rydberg series merging into the. adjacent one (see Clark and Taylor 
1982) may be identified, therefore, as the quantal critical energy, which we demonstrate 
here to coincide approximately with the classical E,. 

We wish to thank Dr Ikeda and Dr Sawada and other members of the research group 
for stimulating discussions. 
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